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Abstract

The Policy Research Working Paper Series disseminates the findings of work in progress to encourage the exchange of ideas about development 
issues. An objective of the series is to get the findings out quickly, even if the presentations are less than fully polished. The papers carry the 
names of the authors and should be cited accordingly. The findings, interpretations, and conclusions expressed in this paper are entirely those 
of the authors. They do not necessarily represent the views of the International Bank for Reconstruction and Development/World Bank and 
its affiliated organizations, or those of the Executive Directors of the World Bank or the governments they represent.
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This paper is a product of the Environment and Energy Team, Development Research Group. It is part of a larger effort by 
the World Bank to provide open access to its research and make a contribution to development policy discussions around 
the world. Policy Research Working Papers are also posted on the Web at http://econ.worldbank.org. The authors may be 
contacted at Sdasgupta@worldbank.org.  

This paper quantifies the impact of inundation risk and 
salinization on the family structure and economic welfare 
of coastal households in Bangladesh. These households 
are already on the “front line” of climate change, so their 
adaptation presages the future for hundreds of millions of 
families worldwide who will face similar threats by 2100. 
The analysis is based on a household decision model that 
relates spatial deployment of working-age, migration-capa-
ble members to inundation and salinization threats. The 
analysis uses appropriate estimation techniques, includ-
ing adjustments for spatial autocorrelation, and finds 
that households subject to high inundation and saliniza-
tion threats have significantly higher out-migration rates 
for working-age adults (particularly males), dependency 
ratios, and poverty incidence than their counterparts in 
non-threatened areas. The findings indicate that the critical 
zone for inundation risk lies within four kilometers of the 

coast, with attenuated impacts for coastal-zone households 
at higher elevations. The results paint a sobering picture 
of life at the coastal margin for Bangladeshi households 
threatened by inundation and salinization, particularly 
households that are relatively isolated from market centers. 
They respond by “hollowing out,” as economic necessity 
drives more working-age adults to seek outside earnings. 
Those left behind face a far greater likelihood of extreme 
poverty than their counterparts in less-threatened areas. The 
powerful results for market access, coupled with previous 
findings on salinity and road maintenance, suggest that 
infrastructure investment may offer a promising option. 
Road improvements that reduce travel times for isolated 
settlements compensate them for an increase in salinity. 
Thus, road improvement may warrant particular attention 
as an attractive adaptation investment in coastal Bangladesh. 
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1.  Introduction 
 

The potential impacts of climate change on coastal regions include progressive inundation from 

sea level rise, heightened storm damage, loss of wetlands, and increased groundwater salinity from 

saltwater intrusion.  Worldwide, about 600 million people currently inhabit low-elevation coastal zones 

that will be affected by progressive inundation and salinization (Wheeler 2011; CIESIN 2010).  Recent 

research suggests that the sea level may rise by one meter or more in the 21st century, which would 

increase the vulnerable population to about one billion by 2050 (Hansen and Sato 2011; Vermeer and 

Rahmstorf 2009; Pfeffer et al. 2008; Rahmstorf 2007; Dasgupta et al. 2009; Brecht et al. 2012).   

While most research has focused on inundation and losses from heightened storm surges, increased 

soil and groundwater salinity may also pose significant threats to livelihoods and public health through 

their impacts on infrastructure, agriculture, aquaculture, coastal ecosystems, and the availability of fresh 

water for household and commercial use.  Understanding the physical and economic effects of salinity 

diffusion and planning for appropriate adaptation will be critical for long-term development and poverty 

alleviation in countries with vulnerable coastal regions (Brecht et al. 2012).  

Bangladesh provides an excellent setting for investigation of these issues, because it is one of the 

countries most threatened by sea level rise and saltwater intrusion.  In Bangladesh, about 30% of the 

cultivable land is in coastal areas where salinity is affected by tidal flooding during the wet season, 

direct inundation by storm surges, and movement of saline groundwater during the dry season (Haque, 

2006).  In consequence, the potential impact of salinity has become a major concern for the Government 

of Bangladesh and affiliated research institutions.  Recently, the Bangladesh Climate Change Resilience 

Fund (BCCRF) Management Committee has highlighted salinity intrusion in coastal Bangladesh as a 

critical part of adaptation to climate change.  Prior research on this issue has been conducted or co-

sponsored by the Ministry of Environment and Forests (World Bank 2000) and two affiliated 
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institutions: the Center for Geographic and Environmental Information Services (Hassan and Shah 2006) 

and the Institute of Water Modeling (IWM 2003; UK DEFR 2007).  Additional research has been 

conducted by the Bangladesh Center for Advanced Studies (World Bank 2000; Khan et al. 2011), the 

Bangladesh Agricultural Research Council (Karim et al. 1982, 1990), and the Bangladesh Soil 

Resources Development Institute (SRDI 1998a,b; Petersen and Shireen 2001).  

Resources will remain scarce, and mobilizing a cost-effective response will require an integrated 

spatial analysis of threats from sea level rise and salinity diffusion, their socioeconomic and ecological 

impacts, and the costs of prevention, adaptation and remediation.  The temporal and geographic pattern 

of appropriate adaptation investments will depend critically on the magnitudes of inundation threats and 

salinity diffusion in different locations.  Understanding household choices will also be critical, since 

households may respond to localized threats from inundation and salinization by relocating some or all 

members to areas where expected earnings and survival probabilities are higher.  Drawing on previous 

research (Dasgupta, et al., 2014a,b,c,d), this paper attempts to contribute by developing and quantifying 

a household decision model that relates spatial deployment of working-age, migration-capable members 

to threats posed by potential inundation and salinization.  We also investigate the impacts of inundation 

risk and salinization on poverty incidence, and use our results to identify possible implications for 

adaptation policy. 

The remainder of the paper is organized as follows.  Section 2 develops the household labor 

allocation model from two foundations: a utility function with earnings and family amenities 

(principally related to task-sharing) as substitutes, and an agricultural profit function with labor and soil 

fertility as substitutes.  In Section 3, we introduce the data used for model estimation.  Section 4 

specifies regression equations and reports results for the labor allocation model, as well as a model that 

quantifies the associated impact on household poverty.  Section 5 uses sample-bounded values of the 
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regression variables to explore the implications of our results, while Section 6 provides a summary and 

conclusions. 

 2.  Household Responses to Salinization and Recurrent Inundation   

Coastal Bangladesh presages the future for other coastal regions, since its communities have 

already experienced the widespread inundations and salinization that will accompany sea level rise and 

increased severity of tropical cyclones.  Cyclones struck coastal Bangladesh 154 times during the 118-

year period between 1877 and 1995, and five severe cyclones struck between 1995 and 2009.  

On average, severe cyclones strike Bangladesh every three years, producing storm surges that can reach 

heights of 10 meters (Dasgupta et al. 2010).  Accompanying salinization of coastal lands has been 

exacerbated by sea level rise, progressive land subsidence and rapid growth of coastal saltwater shrimp 

farming.   

Recent econometric research by Dasgupta et al. (2014b,c,d) has shown that salinization has had 

significant impacts on agricultural income, public health and transport infrastructure in coastal areas.  

One result has been progressive reduction of traditional income-earning opportunities in agriculture for 

coastal households (Islam 2006).  This effect has compounded the risks associated with recurrent 

inundations in the coastal region, which are generally highest in areas directly abutting the coast.  

Expected losses from inundation fall with elevation, since communities on higher ground are more 

protected from storm surges.  Soil and groundwater salinity also fall rapidly with elevation, which 

protects against inland saline diffusion from the ocean and tidal rivers (Dasgupta et al. 2014b). 

2.1  Household Labor Allocation Decisions 

Given the inflexibility of land tenure conditions in coastal Bangladesh, households in the most 

threatened areas seldom have the option of moving further inland or uphill.  For most, the only recourse 

is repatriation of outside earnings by working-age family members.  To model the household labor 
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allocation decision, we posit a standard diminishing-returns utility function in income and family 

amenity, which includes both psychic benefits from cohabitation and task-sharing for household upkeep 

and dependent care.  Expected urban earnings are given for each working-age household member.  

Expected rural earnings are determined by expected profit in local agriculture, which we posit to be a 

function of a fixed product price net of transport cost to market, soil salinity and inundation risk.  To 

reach household migratory equilibrium, working-age members are sent to outside employment until 

expected outside earnings for the marginal potential migrant (less urban living expenses) are just equal 

to expected rural earnings, plus incremental amenity losses.  Given the conditions specified above 

(standard utility function in income and task-sharing amenity; fixed output price, fixed urban wage) the 

optimal share of working-age members retained in the household is given by: 

(1)  η* = f(t,s,r)  

where  η = Optimal share of working-age members who are household residents 
 t  = Travel time to nearest market center 
 s  = Soil salinity 
 r  = Inundation risk 
 
f`(t) < 0; f`(r) < 0 
 
In this specification, two components of expected agricultural revenue -- travel time to market and 

inundation risk -- are exogenous and unaffected by workers’ migratory decisions.  An increase in either 

factor unambiguously reduces expected revenue (and earnings), increases out-migration and reduces η, 

the share of resident working-age household members.  The effect of increased soil salinity, on the other 

hand, is ambiguous because salinity and labor may be complements in production (i.e. increased labor 

intensity may compensate for increased salinity).5  The effect on migratory equilibrium depends on the 

magnitude of labor-salinity complementarity and the impact on net earnings.   

  

5 The econometric findings of Dasgupta, et al. (2014b) are ambiguous on the size and significance of the relationship between 
salinity and labor in high-yield rice production.  
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2.2  Household Welfare 

Increased salinization or inundation risk unambiguously reduces household welfare, although the 

nature of the welfare reduction will depend on three factors in our model:  the magnitude of labor-

salinity complementarity, the substitutability of income and amenity, and the proportionality of income-

sharing between household members who work outside and those who remain resident.  Given the 

previously-noted assumptions about welfare and agricultural profit functions, we would expect increased 

salinization or inundation risk to produce a new interior solution in which total family income and 

family amenity are both reduced.  We are agnostic about family income-sharing arrangements, so we 

have no prior expectation about the magnitude of economic welfare reduction for remaining household 

residents.  However, our expectations about marginal effects on the economic welfare of household 

residents are unambiguous: 

(2)  W = w(t,s,r)  

where W = Economic welfare of household residents 
 t  = Travel time to nearest market center 
 s  = Soil salinity 
 r  = Inundation risk 
 
w`(t) < 0; w`(s) < 0; w`(r) < 0 

3.  Data 

We estimate equations derived from our household decision model using coastal region data from 

several sources.  

3.1  Household Labor and Economic Status 

We obtain information on household membership in the coastal region from the most recent 

Bangladesh Demographic and Health Survey (NIPORT 2011).  Figure 1 displays our 178 sample 

clusters, which are drawn from the areas where soil salinity data are available (see the following 
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subsection). 6  Many surveyed clusters lie on or near the coastal margin and have been exposed to 

frequent inundations, while others are much further inland.   

From our 178 clusters, we select households for analysis using a strict residence criterion.  The 

DHS reports whether each surveyed person is a household member, and whether that person slept in the 

household residence on the previous night.  This information allows for a distinction between guests and 

household members, as well as removal of ambiguity about whether people are physically resident.  To 

ensure consistency with our modeling approach, we select only households where all recorded 

individuals are members who slept there on the night prior to the survey.7    

For selected households in the cluster sample, we use demographic data on individuals to construct 

three measures:  separate totals for working-age and migration-capable males and females, age 18-60, 

and a composite total for dependent males and females age 0-17 and 61+.  We also extract the DHS 

wealth index, the best available measure of household economic welfare, which is derived from a 

principal components analysis that incorporates a household’s ownership of selected, easy-to-observe 

assets such as televisions, bicycles, housing constructions materials, and types of water access and 

sanitation facilities.   

3.2  Inundation Risk Factors 

Inundation risk depends on distance from the coast and elevation.  For each cluster, we calculate 

its centroid distance from the coast using the boundary file provided by the GADM database of global 

administrative areas.8  We calculate centroid elevations using SRTM data at 90 m resolution provided 

by Jarvis et al. (2008). 

6 The indicated locations are cluster centroids supplied by the DHS, which randomly displaces GPS latitude/longitude 
positions to ensure confidentiality for respondents.  DHS-supplied urban centroids are within 2 km of actual centroids; 99% 
of rural cluster centroids are within 5 kilometers of actual centroids and 1% are within 10 km.   
7 We recognize that a few of the surveyed household members who slept there on the previous night may have been visiting 
from distant areas of employment.  We cannot quantify this error factor, but we believe that it must be small. 
8 Country boundary shapefiles are available from gadm.org at http://gadm.org/country.  
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3.3 Salinity Measures 

For this study, the Bangladesh Soil Research Development Institute has provided measures from 

41 soil salinity monitoring stations for the period 2001-2009.  In Dasgupta et al. (2014b), we extend 

these measures using projections of river salinization, temperature and rainfall through 2050.  Our 

results (Figure 2) depict current high-salinity areas in the coastal region of Bangladesh, as well as areas 

that will have significant increases in soil salinity during the coming decades.  Monitoring stations are 

Figure 1:  Sample survey clusters from DHS 2011 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
color-coded using standardized ranges for soil salinity in 2001, 2009 and 2050:9  Blue (0-0.75 dS/m); 

Green (0.75-1.50); Yellow (1.50-2.25); Orange (2.25-4.50); Red(4.50-6.00) and Purple (6.00+).  In 

2001, Khulna has the greatest variance among the four regions, with northern stations uniformly Blue 

and central stations heavily Red and Purple.  Stations in Barisal vary from Blue to Orange, while 

stations in Chittagong vary from Green to Red.   

9 The standard sample-based measure for soil salinity is electrical conductivity (in dS/m -- deciSiemens per meter). 
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By 2009, a general pattern of salinity increase is already apparent:  All stations in northern Khulna 

have increased from Blue to Green; nearly all stations in Barisal (one exception) are Yellow or Orange; 

and stations in Chittagong have become heavily Orange as well. The shift continues through 2050, with 

some stations in north Khulna changing to Yellow; most stations becoming Purple in central Khulna, 

most stations in Barisal becoming Orange (and one changing to Red), and the sole Green station in 

Chittagong becoming Yellow.10 

For this paper, we extrapolate slightly from actual 2009 monitor readings to 2011 using the 

projected path to 2050 for each monitoring station.  To derive salinity measures for clusters, we spatially 

interpolate salinity measures from the 41 soil salinity monitors.11  We compute the interpolated salinity 

measure for each month of 2011 at the geographic centroid of each cluster.  Then we calculate the 

annual salinity mean for matching with the other cluster-level variables. 

3.4  Travel Time to Market Centers 

We use high-resolution spatial estimates of travel time to the nearest urban area with 50,000+ 

population, developed by Uchida and Nelson (2009).  Our centroid estimate for each DHS cluster is the 

nearest measure in our Uchida-Nelson point file, which has a resolution of .00083 decimal degrees or 

.92 km.  We believe the nearest-neighbor approach is appropriate in this context, since the median 

distance from the closest Nelson-Uchida point is .36 km in our sample.  In contrast, the DHS introduces 

much larger random variations into cluster centroid locations to ensure respondents’ confidentiality:  

within 2 km of the actual centroid for urban clusters and 5 km for most rural clusters. 

  

10 We have excluded one geographically-isolated station from Figure 2 to make the clustered icons easier to view.  This 
station, Patenga, is further south on the coast of Chittagong.  It is Yellow in 2001 and 2009, and changes to Orange in 2050. 
11 Our spatial interpolation method employs the geonear package in Stata.  Salinity at each point on the surface is a weighted 
combination of monitor measures; weights decline with the square of the distance from the point to each monitor.   
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4.  Model Specification and Estimation 

4.1  Household Labor Allocation 

Our regression model for household labor allocation relates the household percent of resident 

working-age individuals to travel time to the nearest urban center, soil salinity and two components of 

inundation risk:  distance from the coast and elevation.  We test gender differences by fitting separate 

regressions for working-age males and females. 

From the household decision model summarized in equation (1) above, we expect the household 

percent of working-age individuals to be lower in clusters that are further from urban centers.  The 

expected effect of salinity is ambiguous because rural earnings depend on the degree of complementarity 

between salinity and labor in agricultural production.  The working-age percent should fall with 

inundation risk, which is lower for clusters that are further from the coast, and at higher elevations.   

Beyond some distance margin, we would not expect perceived inundation risk to affect household 

decisions.  In the same vein, we would not expect elevation to have differential effects beyond the 

critical margin.  We have determined this margin empirically in preliminary regression work, by 

introducing dummy variables for unit distances from 1 to 10 km and interacting those dummies with the 

log of elevation (we use the log form to ensure a lower bound of zero for the elevation effect).  We find 

highly significant distance and elevation effects for the first four kilometers, but no effects beyond 4 km.  

In addition, we find no statistically-significant difference between the measured impacts for the four 

included distance dummies and no significant differences for the interactions of these dummies with log 

elevation.  Accordingly, we consolidate the distance and elevation factors into single variables. 
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Figure 2:  Observed and projected soil salinity measures: 2001, 2009, 2050  
 
 
 
 
 
 
 
2001 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
2009 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
2050 
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4.2  Specification: Household Labor Allocation 

We specify our final estimation model for labor allocation as follows: 

(3)  𝜂𝜂𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑆𝑆𝑖𝑖 + 𝛽𝛽3𝐶𝐶𝑖𝑖 + 𝛽𝛽4𝐶𝐶𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝐸𝐸𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  

 Expected signs:  β1, β3 < 0; , β4 > 0   
 
 where, for household i in cluster j 

 ηij = Household percent of resident working-age individuals (male or female) 
 Tj = Travel time to nearest urban center from cluster centroid (hundreds of minutes) 
 Si = Average cluster soil salinity in 2011 (dS/m) 
 Cj =    Coastal proximity dummy variable (1 if cluster is within 4 km; 0 otherwise)  
 Ej = Elevation of the cluster centroid (m) 
 Ɛit = Random error term 
 

In this specification, we expect the household percent of resident working-age individuals to be 

lower for clusters that are further from urban centers and within 4 km of the coast.  Within the 4 km 

coastal zone, we expect the household percent of working-age individuals to be higher at higher 

elevations (where inundation risk is lower).  As we have noted in Section 2, the expected sign of salinity 

is ambiguous because the degree of complementarity between salinity and labor in agriculture is 

unknown. 

4.3  Estimation and Results: Household Labor Allocation 

After application of our strict residential reporting rule for household selection, we have sufficient 

observations on all variables for an estimation sample of 3,367 households distributed across 178 sample 

clusters.   

Tables 1 and 2 report our results for working-age males and females, respectively.  The natural 

estimator for our regression model is tobit since the dependent variable, household percent of resident 

working-age individuals, is left-truncated at zero.  Accordingly, the first three columns report estimates 

for standard tobit, GLS tobit (which allows for differences in error variances for our 178 sample 

clusters) and tobit with robust standard errors.   
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Spatial autocorrelation may also be an issue, but the DHS assignment of identical centroid 

coordinates to households in each cluster makes it impossible to use the standard estimators.  Because 

distances are significantly larger between than within clusters, we test for order-of magnitude spatial 

autocorrelation effects by randomly varying household coordinates within .01 decimal degree 

(approximately one kilometer) of cluster centroid values.  This enables us to incorporate spatial 

autocorrelation into the results reported in the seventh columns of Tables 1 and 2.12  These are estimates 

for a linear model, since an appropriate spatial tobit estimator was not available to us.  For comparison, 

we also include linear estimates for OLS, GLS and Robust regressions in columns four, five and six of 

the two tables. 

Table 1 presents results for working-age male household residents, which are strongly consistent 

with our prior expectations in all seven specifications.  The impact of travel time to the nearest urban 

center is negative and highly significant.  For the two inundation risk factors, both highly significant, 

location within 4 km of the coast has a negative impact, while its interaction with elevation is positive.  

Our results for salinity are positive and highly significant, suggesting a strong role for labor-salinity 

complementarity in the determination of local earnings. 

Our results for working-age female residents in Table 2 provide an instructive counterpoint to the 

estimates in Table 1.  We find equally-significant negative results for travel time to the nearest urban 

center, a traditional poverty determinant that is not related to coastal inundation risk.  However, the 

estimated effect of travel time on female residency is substantially lower than the effect for males.  The 

same is true for salinization and inundation risk:  The signed effects are the same, but the estimated 

impacts are so small that their 95% confidence intervals include zero effects in all but one case.  We 

conclude that coastal risk factors are important for household labor allocation decisions, but principally 

through their impact on working-age males. 

12 We use the Stata routine spreg with an inverse-distance matrix to obtain these estimates, 
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4.4  Specification: Household Economic Welfare 

Our estimation exercise for household economic welfare is more general than the exercise for 

working-age residents, since it incorporates all direct and indirect effects of salinization and inundation 

risk.  We are particularly interested in the impact of coastal risk variables on poverty, so we have 

adopted a different estimation strategy in this case.  First, we translate households’ DHS wealth indices 

into percentile measures and identify households in the bottom quintile of the national DHS distribution.  

Then we specify and estimate the following model:13 

 (4)  𝑝𝑝(𝑄𝑄)𝑖𝑖𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑆𝑆𝑖𝑖 + 𝛽𝛽3𝐶𝐶𝑖𝑖 + 𝛽𝛽4𝐶𝐶𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝐸𝐸𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑖𝑖  

 Expected signs:  β1, β2, β3 > 0; ,  β4 < 0   
 
 where, for household i in cluster j 

 p(Q)ij = Probability that houshold i in cluster j is in the lowest national wealth quintile  
 Tj = Travel time to nearest market center from cluster centroid (hundreds of minutes) 
 Si = Average cluster soil salinity in 2011 (dS/m) 
 Cj =    Coastal proximity dummy variables (1 if cluster is within 4 km; 0 otherwise)  
 Ej = Elevation of the cluster centroid (m) 
 Ɛit = Random error term 
 
As previously noted, all three locational factors should have significant effects on household economic 

welfare.  We expect the incidence of household poverty to increase with distance from the nearest urban 

center, salinization and proximity to the coast.  The latter effect should be attenuated by elevation.  

 

  

13 The DHS surveys also include measures of education and health that are traditionally associated with higher incomes.  
However, we believe that health and education are jointly determined with income in a fully-specified model.  We restrict 
model variables to the set specified in (4) because we have insufficient identifying information to include endogenous 
education and health measures as separate factors.  
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Table 1:  Household deployment of working-age males in coastal Bangladesh 
 
Dependent variable:  Working-age male percent of resident household members  
 
 
     Tobit  Tobit                                Spatial 
  Tobit   GLS Robust               OLS                  GLS                 Robust        Autocorrelation 
 
Travel time to -1.409 -1.409 -1.409 -1.179 -1.179 -1.179 -0.838 
 urban center (5.28)** (4.51)** (5.26)** (5.23)** (4.52)** (5.37)** (4.13)** 
 
Salinity 0.475 0.475 0.475 0.409 0.409 0.409 0.297 
 (4.04)** (3.13)** (4.07)** (4.08)** (3.12)** (4.01)** (3.44)** 
 
Coastal zone -5.704 -5.704 -5.704 -4.680 -4.680 -4.680 -3.498 
(within 4 km) (3.55)** (3.63)** (3.76)** (3.46)** (3.61)** (3.86)** (2.93)** 
 
Coastal zone 2.653 2.653 2.653 2.118 2.118 2.118 1.605 
x Log elevation (3.22)** (3.66)** (3.58)** (3.04)** (3.48)** (3.58)** (2.62)** 
 
Constant 23.910 23.910 23.910 25.294 25.294 25.294 15.004 
 (35.81)** (25.22)** (35.38)** (44.70)** (31.28)** (44.00)** (6.72)** 
 
Observations 3,367 3,367 3,367 3,367 3,367 3,367 3,367 
 
R-squared    0.02 0.02 0.02  
 
Absolute value of t statistics in parentheses        
* significant at 5%; ** significant at 1%  
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Table 2:  Household deployment of working-age females in coastal Bangladesh 
 
Dependent variable:  Working-age female percent of resident household members  
 
 
     Tobit  Tobit                                Spatial 
  Tobit   GLS  Robust                OLS                GLS                 Robust        Autocorrelation 
 
Travel time to -0.728 -0.728 -0.728 -0.708 -0.708 -0.708 -0.644 
 urban center (3.48)** (3.53)** (3.60)** (3.51)** (3.58)** (3.66)** (3.02)** 
 
Salinity 0.141 0.141 0.141 0.134 0.134 0.134 0.122 
 (1.52) (1.32) (1.47) (1.49) (1.30) (1.44) (1.44) 
 
Coastal zone -2.421 -2.421 -2.421 -2.120 -2.120 -2.120 -1.959 
(within 4 km) (1.92) (1.34) (1.82) (1.75) (1.25) (1.68) (1.68) 
 
Coastal zone 1.350 1.350 1.350 1.215 1.215 1.215 1.125 
x log Elevation (2.09)* (1.42) (2.00)* (1.95) (1.36) (1.89) (1.86) 
 
Constant 29.691 29.691 29.691 29.888 29.888 29.888 25.803 
 (56.53)** (55.78)** (55.84)** (59.03)** (58.49)** (58.18)** (3.95)** 
 
Observations 3,367 3,367 3,367 3,367 3,367 3,367 3,367 
 
R-squared    0.01 0.01 0.01  
 
Absolute value of t statistics in parentheses        
* significant at 5%; ** significant at 1%        
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4.5  Estimation and Results: Household Economic Welfare 

This exercise does not use household residence data for demographic groups, so we do not need to 

limit the sample by applying our strict residential reporting rule.  This expands the estimation sample to 

5,513 households distributed across 178 sample clusters.   

Table 3 reports our results.  The natural estimator for our regression model is probit, since the 

dependent variable is dichotomous:  1 for households in the lowest national DHS wealth index quintile 

and 0 otherwise.  Accordingly, the first three columns report estimates for standard probit, GLS probit 

(which allows for differences in error variances for our 178 sample clusters) and probit with robust 

standard errors.   

Spatial autocorrelation may also be an issue but, as we previously noted, the DHS assignment of 

identical centroid coordinates to households in each cluster makes it impossible to use the standard 

estimators.  Again, we incorporate order-of-magnitude spatial autocorrelation effects by randomly 

varying household coordinates within .01 decimal degree (approximately one kilometer) of cluster 

centroid values.  We report our spatial autocorrelation results in the seventh column of Table 3.14  These 

are estimates for a linear probability model, since an appropriate spatial probit estimator was not 

available to us.  For comparison, we also include linear probability estimates for OLS, GLS and Robust 

regressions in columns four, five and six of the table. 

Our results are strongly consistent with prior expectations in all cases, including the estimator that 

adjusts for spatial autocorrelation.  Travel time to the nearest urban center, salinity and coastal zone 

location all have positive, highly significant impacts on the probability that a household is in the lowest  

 

14 Again, we use the Stata routine spreg with an inverse-distance matrix to obtain these estimates, 
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Table 3:  Household poverty in coastal Bangladesh 
 
Dependent variable:  Household DHS wealth indicator status (1 if lowest national quintile; 0 otherwise)  
 
    Probit Probit                               Spatial 
 Probit  GLS Robust              OLS                  GLS                Robust        Autocorrelation 
 
Travel time to 0.165 0.165 0.165 0.044 0.044 0.044 0.022 
  urban center (10.14)** (5.22)** (10.47)** (10.79)** (4.95)** (9.61)** (7.06)** 
 
Salinity 0.022 0.022 0.022 0.006 0.006 0.006 0.003 
 (2.90)** (1.62) (2.93)** (3.07)** (1.64) (2.91)** (2.28)* 
 
Coastal zone 0.794 0.794 0.794 0.223 0.223 0.223 0.123 
 (within 4 km) (8.53)** (4.59)** (8.68)** (9.04)** (4.16)** (7.51)** (6.63)** 
 
Coastal zone -0.271 -0.271 -0.271 -0.079 -0.079 -0.079 -0.045 
 x log Elevation (5.52)** (3.10)** (5.76)** (6.22)** (3.06)** (5.40)** (4.71)** 
 
Constant -1.429 -1.429 -1.429 0.058 0.058 0.058 -0.000 
 (31.41)** (16.93)** (31.30)** (5.65)** (3.25)** (5.83)** (0.02) 
 
Observations 5,113 5,113 5,113 5,113 5,113 5,113 5,113 
R-squared    0.06 0.06 0.06  
 
Absolute value of t statistics in parentheses        
* significant at 5%; ** significant at 1% 
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quintile of the DHS national wealth index distribution.15  As expected, the impact of coastal zone 

residence is attenuated by elevation. 

5.  Implications of the Results  

Our results are consistent with prior expectations about signs and significance, but they do not 

provide easily-interpreted evidence about impact magnitudes.  We explore this issue using a matrix of 

sample low and high values for the relevant variables in our model: 

Table 4:  Sample-based values for impact exploration 

 

 

 

5.1  Implications for Household Composition 

Using all combinations of the values in Table 4, we employ the tobit estimates16 in Tables 1 and 2 

to predict corresponding household residence percents of working-age males and females.  For each 

household we add the two predicted percents, subtract the total from 100 to determine dependent 

percents17, and calculate dependency ratios (percent dependents/percent working-age adults).  Table 5 

presents our results, ordered by dependency ratio. 

Our results indicate a powerful impact for all three location variables -- distance from the nearest 

urban center, salinity and inundation risk.  At one extreme, households in high-salinity areas that are 

very near urban centers (rows 1,2,3) have the highest residence percents of working-age adults and 

dependency ratios around 0.60.  At the other extreme (row 16), households in low salinity, low-elevation 

15 The sole exceptions are the GLS results for the probit and linear probability models, which fail to reach the standard for 
classical significance. 
16 The standard, GLS and Robust tobit parameter estimates are identical; only the estimated standard errors differ. 
17 This approach ensures additivity to 100%.  We have also estimated a third equation for the dependent percent, generated 
predictions for the variables in Table 4, and totaled percents for dependents, working-age males and working-age females.  
This unconstrained approach generates total predicted shares above 95% in all cases. 

Sample-
Based 
Values 

Salinity 
(dS/m) 

Time to Urban 
Center 

(minutes) 

Distance from 
Coast 
(km) 

Elevation 
(m) 

Low 1 0 0 1 
High 13 300 30 10 
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areas that are far from an urban center and close to the coast have much lower working-age adult 

percents and dependency ratios that are 2.5 times higher (1.52).  Intermediate cases in Table 5 illustrate 

the effects of changes in model variables on dependency ratios via their impact on working-age male 

and female percents.  As our econometric results indicate, the relative impacts are greater for working-

age males:  From row 1 to row 16, their percent household representation falls by 52.6% (from 30.49% 

to 14.46%).  For females, the corresponding decrease is 21.7% (from 32.22% to 25.23%). 

To illustrate on intermediate case, consider households in low-elevation, high-salinity areas that 

are far from an urban center (rows 6,14).  Reducing their coastal distance from 30 km to 1 km reduces 

their working-age male and female percents from 25.86% and 29.34% to 20.16% and 26.92%, 

respectively.  As a consequence the household dependency ratio increases by 38.3%, from 0.81 to 1.12. 

To summarize, our results suggest that all three location variables have large impacts on household 

composition, principally via their effects on household decisions about departure of working-age males 

for outside earning opportunities.  

5.2  Implications for Household Economic Welfare  

Using all combinations of the values in Table 4, we use the probit estimates18 in Table 3 to predict 

corresponding wealth quintile status.  Table 6 presents our results, ordered by the probability that a 

household is in the lowest quintile of the DHS national household wealth distribution. 

18 The standard, GLS and Robust probit parameter estimates are identical; only the estimated standard errors differ. 
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Table 5:  Impact results for resident family structure 
 

 

Salinity 
(dS/m) 

Time to 
Urban 
Center 

(minutes) 

Distance 
from 
Coast 
(km) 

Elevation 
(m) 

Percent 
Males 
18-60 

Percent 
Female 
18-60 

Percent 
Adults 
18-60 

Percent  
Dependents 
(0-17,61+) 

Female/Male 
Ratio, 

Adults 18-60 
Dependency 

Ratio 
1 13 0 1 10 30.49 32.22 62.71 37.29 1.06 0.59 
2 13 0 30 1 30.09 31.53 61.62 38.38 1.05 0.62 
3 13 0 30 10 30.09 31.53 61.62 38.38 1.05 0.62 
4 13 300 1 10 26.27 30.03 56.3 43.7 1.14 0.78 
5 1 0 1 10 24.79 30.52 55.31 44.69 1.23 0.81 
6 13 300 30 1 25.86 29.34 55.21 44.79 1.13 0.81 
7 13 300 30 10 25.86 29.34 55.21 44.79 1.13 0.81 
8 1 0 30 1 24.39 29.83 54.22 45.78 1.22 0.84 
9 1 0 30 10 24.39 29.83 54.22 45.78 1.22 0.84 

10 13 0 1 1 24.38 29.11 53.49 46.51 1.19 0.87 
11 1 300 1 10 20.56 28.34 48.9 51.1 1.38 1.04 
12 1 300 30 10 20.16 27.65 47.81 52.19 1.37 1.09 
13 1 300 30 1 20.16 27.65 47.81 52.19 1.37 1.09 
14 13 300 1 1 20.16 26.92 47.08 52.92 1.34 1.12 
15 1 0 1 1 18.68 27.41 46.09 53.91 1.47 1.17 
16 1 300 1 1 14.46 25.23 39.68 60.32 1.75 1.52 
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Table 6:  Impact results for household wealth status 

 

 

 

 

 

 

 

 

 

 

These results provide striking evidence that our results are important for poverty as well as family 

structure.  For households in low-salinity areas that are distant from the coast and proximate to an urban 

center (rows 1,2), the predicted probability of lowest-quintile wealth status is only 8%.  At the other 

extreme (row 16), households in high-salinity low-elevation areas that are far from an urban center and 

next to the coast have a predicted lowest-quintile probability of 56%.  In intermediate cases, Table 5 

illustrates the impacts of changes in location variables.  For households in low-elevation areas that are 

far from an urban center and close to the coast (rows 15,16) increasing salinity from 1 dS/m to 13 dS/m 

raises the lowest-quintile probability from 45% to 56%.  For households in low-salinity areas that are far 

from an urban area and close to the coast (rows 9,15), reducing elevation from 10 m to 1 m increases the 

lowest-quintile probability from 23% to 45%.  Finally, for households in high salinity, high elevation 

      

Salinity 
(dS/m) 

Time to Urban 
Center 

(minutes) 

Distance 
from Coast 

(km) 
Elevation 

(m) 

Probability 
of Lowest-
Quintile 
Status 

1 1 0 30 1 0.08 
2 1 0 30 10 0.08 
3 1 0 1 10 0.11 
4 13 0 30 10 0.13 
5 13 0 30 1 0.13 
6 13 0 1 10 0.16 
7 1 300 30 1 0.18 
8 1 300 30 10 0.18 
9 1 300 1 10 0.23 
10 13 300 30 10 0.26 
11 13 300 30 1 0.26 
12 1 0 1 1 0.27 
13 13 300 1 10 0.31 
14 13 0 1 1 0.36 
15 1 300 1 1 0.45 
16 13 300 1 1 0.56 
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areas that are close to the coast (rows 6,13), changing travel time to the nearest urban center from 0 to 

300 minutes increases the lowest-quintile probability from 16% to 31%. 

Our comparative results for salinity and travel time may have significant implications for 

adaptation investments, which are intended to compensate households that are differentially affected by 

climate change.  To illustrate, we consider the case of coastal households at 1 m elevation that lie within 

the 4 km coastal margin.  Varying travel times from 0 hours to 9 hours (the sample maximum), we find 

that increasing salinity from 1 dS/m to 13 dS/m increases the probability of lowest-quintile economic 

status by an average of 10%.  Across variations in salinity, we find that decreasing travel time by 1 hour 

decreases the probability of lowest-quintile economic status by an average of 4%.  By implication, road 

improvements that shorten market access time for a low-lying community at the coastal margin by 2 1/2 

hours would be sufficient to offset a poverty-inducing increase in salinity from the sample best case (1 

dS/m) to the worst case (13 dS/m).   

We recognize that discussions of adaptation to salinization normally focus on direct compensation 

for welfare losses via measures such as diffusion of saline-resistant crops, development of low-salinity 

drinking water supplies and greater road maintenance expenditures to offset salinity-accelerated 

depreciation.19  In the case of road improvement, which includes maintenance, our results have 

identified an investment target that qualifies from the direct targeting perspective, while also offering 

powerful leverage for indirect compensation through the poverty-reducing effect of improved market 

access.     

6.  Summary and Conclusions 

This paper has quantified the impact of inundation risk and salinization on the family structure and 

economic welfare of coastal households in Bangladesh.  These families are already on the “front line” of 

19 For empirical results on these issues, see Dasgupta, et al. (2014b,c,d). 
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climate change, so their adaptation presages future decisions by hundreds of millions of families 

worldwide who will face similar threats by 2100.  Their behavior may also provide useful insights for 

adaptation investment planners.  

Our exercise builds on a household decision model that relates spatial deployment of working-age, 

migration-capable members to threats posed by potential inundation and salinization in the coastal 

region.  Our spatially-formatted data come from five sources:  information on household demographics 

and economic welfare from the Bangladesh Demographic and Health Survey (DHS) for 2011; soil 

salinity measures from the Bangladesh Soil Research Development Institute; market access measures 

from Uchida and Nelson (2009); and two components of inundation risk:  distance from the coast, 

calculated from digital maps provided by the GADM database of global administrative areas; and 

elevation, using SRTM data at 90 m resolution provided by Jarvis et al. (2008). 

We specify and estimate regression models that quantify the impacts of inundation risk and 

salinization on household composition, along with the impact on household economic welfare.  In the 

latter case, we focus on the probability that households are in the lowest quintile of the national wealth 

distribution.  We use appropriate estimation models -- tobit for the household composition analysis, 

probit for the poverty assessment -- and incorporate adjustments for spatial autocorrelation.   

The results are highly significant and strikingly consistent across estimators.  Our findings indicate 

that the critical zone for inundation risk lies within 4 km of the coast, with attenuated impacts for 

coastal-zone households at higher elevations.  Damaging salinity has diffused across a much broader 

area.  We assess the impact of these variables using model-based predictions for sample-bounded values 

of the regression variables.  From most to least favorable conditions, we find that reallocation of labor to 

outside earning opportunities leads to 53% and 22% decreases in resident working-age males and 

females, and a 160% increase in the dependency ratio --  the ratio of old and young dependents to 
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working-age adults.  The poverty impact is even more striking:  From most to least favorable conditions, 

we find that the probability of lowest-quintile economic status rises by nearly 600%, from 8% to 56%.   

In summary, our results paint a sobering picture of life at the coastal margin for Bangladeshi 

households threatened by inundation and salinization.  Confronted by greater threats, they “hollow out” 

as economic necessity drives more working-age adults to seek outside earnings.  And those left behind 

suffer impoverishment at far higher levels than their counterparts who are not on the front lines of 

climate change.  This problem seems likely to grow steadily, in Bangladesh and elsewhere, as the sea 

moves inexorably inland and salinization precedes its arrival.  

In closing, we offer some preliminary thoughts about the implications of our findings for 

adaptation policy.  Our powerful results for market access, coupled with our previous findings on 

salinity and road maintenance (Dagupta et al., 2014d) suggest that infrastructure investment may offer a 

promising option.  At present, isolated settlements in the coastal region face travel times to market 

centers as high as nine hours.  According to our econometric results for poverty incidence, road 

improvements that reduce travel times for isolated settlements by 2 1/2 hours would be sufficient to 

compensate them for an increase in salinity from the best to worst levels in our database.  In light of 

these results, we believe that road improvement may warrant particular attention as an attractive 

adaptation investment in coastal Bangladesh.   
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